鷲ノ木遺跡の環状列石を取り巻く温度環境の測定と解析

石崎武志 ISHIZAKI, Takeshi / 文化財保存修復研究センター長・教授

高橋 毅 TAKAHASHI, Tsuyoshi / 森町教育委員会・社会教育課文化財保護係長

松田 玄 MATSUDA, Gen / 東北芸術工科大学芸術学部 文化財保存修復学科4年

<u>1. はじめに</u>

鷲ノ木遺跡は、北海道の森町にある縄文時代後 期前半(約4,000年前)の環状列石と竪穴墓域か らなる遺跡である。この遺跡は、平成15年の北 海道縦貫自動車道建設に伴う発掘調査中に発見さ れた。1640年に噴火した駒ヶ岳の火山灰に覆わ れ、良好な保存状態であった。環状列石は、3重 の構造をしており、外側は、36.9×33.8mのほ ぼ円形である。多くの石は地面に埋められ、直立 するか斜めに傾いている。平均30~40cmの扁平 な石が多く、602個ある。石の供給地は最も近い 地点で約1km離れた桂川河口である¹⁾。

発掘調査により発見された環状列石等の学術的 な重要性から、平成17年2月に道路工事の工法 変更による環状列石等の現状保存が決定した。工 事は、土被りが3m以下でも遺跡を保存すること ができるパイプルーフ工法が選択された²⁾。横か ら見た断面を図1に示す。地盤の厚さは、2.3m で、地盤の下は、ボックスカルバートと呼ばれる コンクリート構造になっており、コンクリートの 厚さは0.7mである。冬季には、環状列石は気温 の低下により上部から冷却されるのと、地盤は下 部のボックスカルバートのコンクリート部分の温 度低下から地盤下部から凍結することが予測され る。著者は、森町教育委員会より依頼を受け、環 状列石の温度低下や地盤面の温度低下に関して、

図1. 鷲ノ木遺跡およびボックスカルバートの状況

2015年~2020年まで現地観測を行うと共に、地 盤の温度低下による地盤の凍結に関して数値解析 を行ったので、以下に報告する。

2. 気象および温度環境測定

冬季は、気温が低下し、環状列石の温度が0度 以下になると、岩石に含まれる水が凍結し、温度 が上昇すると融解する。この過程の繰り返しによ り、岩石が劣化する可能性がある。ここでは、環 状列石に2重のシートをかけ、環状列石の保存対 策を行っている。現地では、石材表面の温度、地 表面の温度、シート表面の温度など冬季に測定し た。石材表面に温度センサーを設置した状況を図

図 2. 地表面、20cm深さの地温および石表面の温度測定

図3.石表面にシートをかけた状態

2に示す。測定用石材をシートで覆い(図3)、 さらにその上をシートで覆い(図4)、2重のシー トで、石材を保護した。石材表面等の温度測定に は、オンセット社製ホボプロV2(U23-003)を用 い30分ごとに測定した。地表面の積雪状態を確 認するために、タイムラプスカメラ(brinno 社製) を設置し、1日に1回撮影した。また、現地のソー ラーラジエーションシールドを用いた温湿度測定 を、オンセット社製ホボプロV2(U23-002)を用 い30分ごとに測定した。タイムラプスカメラお よび温湿度測定装置の設置状況を図5に示す。

図4.シートをかけシート上面の温度を計測

図 5. 外気の温湿度測定装置およびタイムラプスカメラの 設置状況

3. 気象および温度環境測定結果

2015年~2020年の冬期間、現地で観測を行った。観測結果の内、2015年~2016年および2017 年~2018年の結果を以下に示す。

3-1.2015年~2016年の観測結果

鷲ノ木遺跡で測定された外気日平均温度の変化 を図6に示す。比較のため森町のアメダスデータ も示している。現地で観測された外気温と、森町 のアメダス地点で観測された測定値には、図に示 したように良い対応が見られた。また、森町のア メダス地点で観測された積雪深のデータを図7に 示す。

図6. 鷲ノ木遺跡の気温(破線)と森町アメダス地点で観 測された気温(実線)の変化

図7.森町アメダス地点で観測された積雪深の変化

シート内の地表面温度および20cm 深さの地温 の日平均値を図8に示す。図から、シート内の地 表面温度は、0℃以下になっていないのが分かる。 特に積雪のある時期の温度はほとんど変化してい ないため、積雪層が断熱材として有効に働いてい ることが分かる。シート内石表面温度の日平均値 およびシート外表面温度の日平均値変化を図9に 示す。図9から、シートの外表面は、-5℃まで 温度が低下しているが、2重シート内の石の表面 温度は、最低でも-1.1℃(2016/1/12に記録) 程度しか低下しておらず、2重のシートの断熱効 果は有効であると考えられる。

図8.シート内土表面温度(破線)および20cm深さでの地温 (実線)変化

(破線)変化

図10. 鷲ノ木遺跡の気温(破線)と森町アメダス地点で 観測された気温(実線)変化

図11. 森町アメダス地点で観測された積雪深の変化

3-2.2017年~2018年の観測結果

鷲ノ木遺跡で測定された外気日平均温度の変化 を図10に示す。比較のため森町のアメダスデー タも示している。現地で観測された外気温と、森 町のアメダス地点で観測された測定値には、図に 示したように良い対応が見られた。また、森町の アメダス地点で観測された積雪深のデータを図 11に示す。

シート内の地表面温度および20cm 深さの日平 均地温を図12に示す。図から、シート内の地表 面温度は、0℃以下になっていないのが分かる。 特に積雪のある時期の温度はほとんど変化してい ないため、積雪層が断熱材として有効に働いてい ることが分かる。シート内石表面温度およびシー ト外表面日平均温度変化を図13に示す。図13か ら、シートの外表面は、-6.5℃まで温度が低下 しているが、2重シート内の石の表面温度は、最 低でも-0.4℃(2017/12/1に記録)程度しか低 下しておらず、2重のシートの断熱効果は有効で あると考えられる。また、12月1日に、シート 面温度が、低下しているのは図11に見られる様 に、積雪深が0になり、積雪の断熱効果が無かっ たためと考えられる。

図12. シート内土表面温度(破線)および20cm深さでの地温 (実線)変化

<u>4. 地盤部分のボックスカルバートからの冷</u> 却に関する熱解析

4-1.1 次元構造の熱解析

4-1-1. 地盤中の温度解析

寒冷地において、冬季に気温が下がると地表面 の温度が下がり、地表面の温度が零度以下になる と地盤が凍結する。地盤中の熱流(Q)は、地盤 中の温度勾配に比例する。ここで、温度をT、位 置座標をxで表すと、(1)式のように表される。 これは、フーリエの法則と呼ばれる。ここで、式 にマイナスが付いているのは、熱は、温度の低い 方に流れることを示している。この比例定数Kを 熱伝導率という。

Q = -K dT / dx (1)

次に、熱がある領域に入って来て蓄積されると、 その部分の温度は上昇する。ある領域に蓄積され る熱量は、入ってきた熱量から、出て行く熱量を 引いた値になるので、その関係は(2)式の様に かける。ここで、tは時間、Cは、熱容量(比熱) を表す。

 $C d T / d t = - d Q / d x \qquad (2)$

(2) 式を(1) 式に代入すると、(3) 式が得られる。これを、熱伝導微分方程式という。

CdT/dt=Kd²T/dx² (3) この(3)式は、地盤の表面温度を気象観測デー

タなどで求め、境界条件として解くことにより、 地盤中の温度を計算でき、凍結深さなどを求める ことができる。これを解く方法としては、計算式 を用いて、解析的に解く方法と、計算機を用いて 数値的に解く方法がある。ここでは、GeoSlope 社の熱伝導解析ソフトウエア TEMP/W を用いた。

4-1-2. 温度解析モデル

地盤の下に、コンクリートのボックスカルバー トがあり、鷲ノ木遺跡の地盤が、下から冷やされ ることによりどの程度、凍結するのかを解析する ために、図14の様な、簡単な構造モデルを作成 した。ここで、地盤の厚さは2.3mでボックスカ ルバートのコンクリートの厚さは、0.7mとする。

4-1-3. 温度境界条件

温度境界条件として、地盤の表層は2017年11 月から、2018年4月に現地で測定された地表面 温度(図12)を入力した。また、コンクリート 下面には、2017年11月から、2018年4月に現地 で測定された気温(図10)を入力した。

4-1-4. 有限要素法における温度解析のメッシュ 構造

有限要素法とは、構造を部分的な構造(メッ シュ)に分け、それぞれのメッシュにおいて(3) 式の熱伝導微分方程式を解くことにより、メッ シュ内の温度変化を計算する方法である。ここで は、ボックスカルバートの下部は、気温変化が境 界条件として入力されるため温度変化が大きいの で、正確な温度を得るため、メッシュの大きさは 小さく設定されている。一方、上部に行くに従っ て温度変化はゆっくりとなるため、メッシュの大 きさは大きく設定されている。

4-1-5. 解析のための熱物性値

(3)式の熱伝導微分方程式を解くためには、コ ンクリートおよび地盤土の熱伝導率および熱容量 の値が必要である。ここでは、Geoslope 社の文 献にある物性値³⁾を参照して、下記の通り設定 した。凍結した地盤土の熱伝導率は、不凍水とい う凍結しない水分量が温度により変化するため一 定ではない。本解析モデルでは、その変化も考慮 できる計算モデルとなっている。

○コンクリート

熱伝導率(凍結、未凍結)200 kJ/days/m/℃ 熱容量(凍結、未凍結)2010 kJ/m3/℃、体積 含水率0%

○地盤

熱伝導率 (0℃) 165 kJ/days/m/℃、その他

の温度に関しては、不凍水分量により計算する。 熱容量(凍結)2300 kJ/m3/℃、(未凍結)1900 kJ/m3/℃、体積含水率50%

4-1-6. 解析結果

以上の条件の下に、ボックスカルバートのコン クリート部分および地盤部分の温度解析を行っ た。解析の開始は2017年11月1日で2018年4月 1日まで行った。計算結果を以下に示す。凍結開

始は、2017年11月19日である。これを図15に示す。 図中の青い点線が、0℃線を示す。凍結線は、コ ンクリートの下部から、15cm 程度の位置である。 凍結線は12月1日には、50cm(図16)、1月1日 には90cm(図17)、2月1日には100cm(図18)、 3月1日には120cm(図19)、4月1日には120cm (図20) となった。最大凍結深さは、120cm であっ た。ボックスカルバートの厚さは、70cm である ため、ボックスカルバートの上の地盤の凍結深さ

図16. コンクリートおよび地盤中の温度分布 (2017年12月1日) 凍結深さ50cm

図18. コンクリートおよび地盤中の温度分布 (2018年2月1日) 凍結深さ100cm

Distance 図19. コンクリートおよび地盤中の温度分布 (2018年3月1日) 凍結深さ120cm

は、50cm と推定された。

以上の結果から、地盤の凍結は、下面から50cm 程度までであり、環状列石周辺の地盤の厚さは 230cmであるため、地盤表面から180cmは凍結し ておらず、地盤に対する凍結の影響は小さいと考 えられる。

4-2. ボックスカルバート周辺地盤の熱解析

参考に、ボックスカルバート周辺地盤全体の半 分を対象に、温度解析を行った結果を以下に示す。 熱物性の値、地表面温度、ボックスカルバート内 面温度の設定は、4-1での解析と同様である。

4-2-1. ボックスカルバート周辺地盤の有限要素 法メッシュ構造

ここでは、ボックスカルバートの内部は、気温 変化が境界条件として入力されるため、温度変化 が大きいので、正確な温度を得るため、メッシュ の大きさは小さく設定されている。一方、周辺部 に行くに従って温度変化は、ゆっくりとなるため、 メッシュの大きさは大きく設定されている。ボッ クスカルバートの下面は高速道路面であり、実際 にはアスファルト、砂利層などの構造があるが、 ここでは計算を簡略化するため、コンクリート構 造としている。

4-2-2. 解析結果

以上の条件の下に、ボックスカルバートのコン クリート部分および地盤部分の温度解析を行っ た。解析の開始は2017年11月1日で2018年4月 1日まで行った。計算結果を以下に示す。凍結開 始は、2017年11月19日である。これを図22に示す。 図中の青い点線が、0℃線を示す。凍結線は、コ ンクリートの下部から、15cm程度の位置である。 凍結線は12月1日には、50cm(図23)、1月1日 には90cm(図24)、2月1日には100cm(図25)、 3月1日には120cm(図26)、4月1日には120cm (図27)となった。最大凍結深さは、120cmであっ た。ボックスカルバートの厚さは、70cmである ため、ボックスカルバートの厚さは、70cmである ため、ボックスカルバートの上の地盤の凍結深さ は、50cmと推定された。また、これらの計算から、 ボックスカルバートの横方向の凍結、また高速道 路表面下の地盤に関しても同様に凍結が進行して いくことが確認された。

図22. ボックスカルバート周辺地盤の温度分布 (2017年11月19日)

0. ホリリスカルハード周辺地強の温) (2018年3月1日)

<u>5. まとめ</u>

史跡鷲ノ木遺跡の環状列石の保存のため環状列 石の温度低下や地盤面の温度低下に関して、2015 年~2020年まで現地観測を行うと共に、地盤面 の温度低下による地盤の凍結に関して数値解析を 行った。現地観測結果によると、日平均気温は、 -10℃程度まで下がる日も見られるが、2重の シート内部にある石材の温度は、大きく温度低下 が見られない結果となった。これは、2重シート の断熱効果および冬期間の積雪が断熱材として機 能しているためであり、シートで環状列石を養生 することは、保存対策として有効であることが分 かった。しかし、積雪の無い状態で気温が急に下 がると石材の温度も0℃以下に低下すると考えら れるので、今後も現地調査を継続していくことが 重要であると考えられる。地盤は、下部のボック

図25. ボックスカルハート周辺地盤の温度分子 (2018年2月1日)

スカルバートから冬季に冷却されることによる凍 結の懸念があったため、有限要素法熱伝導解析プ ログラムを用いて、温度分布および凍結深さの解 析を行った。解析により、地盤の凍結は下面から 50cm 程度までであり、環状列石周辺の地盤の厚 さは230cm であることから、地盤表面から180cm は凍結しておらず、地盤に対する凍結の影響は小 さいという結果が得られた。今後は、夏季は遺跡 の公開に伴い、シートカバーを外して、環状列石 を見せることになると考えられるが、気温の低下 する冬季間は、やはりシートで環状列石を養生す ることが必要であると考えられる。

参考文献

- 1) 森町教育委員会:森町の縄文文化、pp.25 (2016)
- 2)長沼孝、高橋毅:鷲ノ木遺跡の保存を実現したトンネル工法、日本遺跡学会誌「遺跡研究」 第9号、p.226-229(2012)
- 3) GEO-SLOPE International Ltd. : Thermal Modeling with TEMP/W An Engineering Methodology September 2014 Edition, pp. 164(2014)